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Abstract. We perform a global fit to the inclusive structure function considering a QCD-inspired model
based on the summation of gluon ladders describing the ep scattering. In line with a two-pomeron approach,
the structure function F2 has a hard piece given by the model and the remaining soft contributions: the
soft pomeron and non-singlet content. We have investigated several choices for the soft pomeron and its
implication in the data description. In particular, we carefully estimated the relative role of the hard and
the soft contributions in a large span of x and Q2.

PACS. 13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes) – 12.38.Bx Pertur-
bative calculations – 12.40.Nn Regge theory, duality, absorptive/optical models

1 Introduction

A great challenge in understanding the hard interactions
has been posed by the HERA small-x data [1] in order
to describe the strong growth of the inclusive structure
function F2 as the Bjorken scale x decreases. This feature
is also supplemented by the scaling violations on the hard
scale given by the photon virtuality Q2. The currently
high accuracy reached turns out in the measurements hav-
ing quite small statistic uncertainties, and probing a large
interval of virtualities, i.e. from a real photon to thou-
sands of GeVs. As far the Regge approach is concerned,
at high energy the ep scattering process is dominated by
the exchange of the pomeron trajectory in the t-channel.
From the hadronic phenomenology, this implies that the
structure function would present a mild increasing on en-
ergy (s � Q2/x), since the soft pomeron intercept ranges
around αIP (0) ≈ 1.08. Such behavior is in contrast with
high-energy ep data, where the effective intercept takes the
values λeff � 1.3–1.4. In the Regge language, this situation
can be solved by introducing the idea of new poles in the
complex angular-momentum plane, for instance rendered
in the multipoles models [2–4], producing quite successful
data description. Another proposition is given by the two-
pomeron model [5], introducing an additional hard inter-
cept and corresponding residue. However, a shortcoming
from these approaches is the poor knowledge about the
behavior on virtuality, in general modeled in an empirical
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way through the vertex functions. An interesting mixed
procedure is to fix the initial conditions for the QCD par-
ton distributions (valence and sea/gluon) in a sufficiently
large initial scale Q2

0 ∼ 1–5 GeV2 from the Regge phe-
nomenology and then perform the QCD evolution up to
higher virtualities [6,7].

On the other hand, the high photon virtuality allows
the applicability of the QCD perturbative methods. Two
main approaches emerge from the QCD formalism: the
DGLAP and BFKL evolution schemes. The DGLAP for-
malism [8] is quite successful in describing most of the
measurements on structure functions at HERA and hard
processes in the hadronic colliders. This feature is even
intriguing, since its theoretical limitations at high energy
are well known [9]. The other perturbative approach is the
BFKL formalism [10], well established at LO level but not
yet completely understood at NLO accuracy. The main is-
sue in the NLO BFKL effects is the correct account of the
subleading corrections in the all-orders resummation [11]
(for a pedagogical review, see, for instance, [12]). The LO
BFKL approach can describe the HERA structure func-
tion in a limited kinematical range, i.e. at not so large
Q2 and small x. The main assumption at LO is that the
processes described through the so-called hard pomeron
are driven by gluon ladder diagrams with infinite rungs
of s-channel gluons at asymptotic energies. A consistent
treatment considering higher-order resummations is cur-
rently in progress and should be available soon. An open
issue is whether the available energies in the nowadays
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colliders actually are asymptotic, allowing the use of the
complete BFKL series.

In this work we perform a global data fitting to the
HERA structure function F2 using as a model for the hard
pomeron the finite sum of gluon ladders [13]. The model is
based on the truncation of the BFKL series keeping only
the first few orders in the strong-coupling perturbative ex-
pansion, where subleading contributions can be absorbed
in the adjustable parameters. From the phenomenology on
hadronic collisions [14], just three orders, ∼ (αs ln(1/x))2,
are enough to describe current accelerator data. The hard-
pomeron model should be supplemented by a soft piece
accounting for the non-perturbative contributions to the
process. The description, therefore, turns out similar to
the two-pomeron model [5], with the advantage of a com-
plete knowledge of the behavior on x and Q2. Concerning
the energy dependence, the hard piece has the logarithmic
growth in contrast with the effective powerlike behavior on
the model [5]. The original model contains a reduced num-
ber of adjustable parameters: the normalization Np and
the non-perturbative scale µ2 from the proton impact fac-
tor and the parameter x0 scaling the logarithms on energy.
More details on those parameters are addressed in the
next section. In a previous study in ref. [15], two distinct
choices for the soft pomeron were analyzed. The resulting
two-pomeron model was successful in describing data on
the structure function F2 and its derivatives (slopes on Q2

and x) for x ≤ 2.5 · 10−2 and 0.045 ≤ Q2 ≤ 1500 GeV2.
Here, we extend the kinematical range of fitting and the
models considered for the soft pomeron.

This paper is organized as follows. In the next section,
we shortly review the main expressions for the hard piece
given by the summation up to the two-rung ladder contri-
bution. In sect. 3, an overall fit to the recent deep inelastic
data is performed based on the hard contribution referred
above supplemented by the remaining soft pomeron and
non-singlet contributions. The role played by the hard and
soft contributions are investigated in detail. There, we also
draw up our conclusions.

2 The hard contribution: summing gluon
ladders

In this section, we review the elements needed to compute
the structure function using the finite sum of gluon ladders
in the ep collision, with the photon-proton center-of-mass
energy labeled by W . Before that, let us shortly motivate
the picture of the finite sum of gluon ladders. At finite
energies, the LLA and NLLA summation implies that the
amplitude is represented by a finite sum on terms, where
the number of terms increases like ln s, rather than by the
solution of the BFKL integral equation. The interest in
taking the firts terms in the complete series in the trunca-
tion is related to the fact that the energies reached by the
present accelators are not high enough to accommodate
a big number of gluons in the ladder rungs that eventu-
ally hadronize. In the energy range of HERA there can be
only a few real gluons produced in any scattering event.

On the other hand, in the LO BFKL resummation real
gluons can be emitted without any cost in energy, while
in reality the production of a real gluon requires an en-
ergy equivalent to one or one and a half units of rapidity.
This violation of energy conservation is probably cured in
the NLO BFKL resummation or by relying on consistency
constraint implementing energy conservation in numerical
simulations of LO BFKL evolution. The truncation of the
whole series could be similar to this consistency condition.
Corroborating the truncation hypothesis, for example the
coefficient weighting the term ∼ ln3 s, turns out to be com-
patible with zero considering even the Tevatron data [14],
in contrast with those expected from the complete resum-
mation.

The proton inclusive structure function, written in
terms of the cross-sections for the scattering of transverse
or longitudinal polarized photons, reads as [16]

F2(x,Q2) =
Q2

4π2αem

[
σT (x,Q2) + σL(x,Q2)

]
, (1)

σT, L(x,Q2) =
G

(2π)4

×
∫

d2k

k2

d2k′

k′2 Φγ∗
T, L(k)K(x,k,k′) Φp(k′) , (2)

where G is the color factor for the color singlet exchange
and k and k′ are the transverse momenta of the exchanged
Reggeized gluons in the t-channel. The Φγ∗

T, L(k) is the
virtual-photon impact factor and Φp(k′) is the proton im-
pact factor. The first one is well known in perturbation
theory at leading order, while the latter is modeled since
in the proton vertex there is no hard scale to allow pQCD
calculations. The kernel K(x,k,k′) contains the dynamics
of the process, for instance, the BFKL kernel.

The amplitudes can be calculated order by order: for
instance, the Born contribution coming from the two-
gluon exchange and the one-rung ladder contribution read
as

A(0) =
2 αs W 2

π2

∑
f

e2
f

∫
d2k

k4 Φγ∗
T, L(k) Φp(k) ,

A(1) =
6α2

sW
2

8π4

∑
f

e2
f ln

(
W 2

W 2
0

)

×
∫

d2k

k4

d2k′

k′4 Φγ∗
T, L(k)K(k,k′) Φp(k′) ,

where αs is considered fixed since we are in the frame-
work of the LO BFKL approach. The perturbative kernel
K(k,k′) can be calculated order by order in the perturba-
tive expansion [16]. The pomeron is attached to the off-
shell incoming photon through the quark loop diagrams,
where the Reggeized gluons are attached to the same and
to different quarks in the loop. The virtual-photon impact
factor averaged over the transverse polarizations reads
as [17,18]

Φγ∗
T, L(k) =

1
2

∫ 1

0

dτ

2π

∫ 1

0

dρ

2π

k2(1 − 2τ τ ′)(1 − 2 ρ ρ′)
k2 ρ ρ′ + Q2ρ τ τ ′ , (3)
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where ρ, τ are the Sudakov variables associated with the
momenta in the photon vertex and τ ′ ≡ (1 − τ) and ρ′ ≡
(1 − ρ).

Gauge invariance requires the proton impact factor
vanishing at k′ going to zero and is modeled in a simple
way,

Φp(k′) = Np
k′2

k′2 + µ2
, (4)

where Np is the unknown normalization of the proton
impact factor and µ2 is a scale which is typical of the
non-perturbative dynamics. These scales will be consid-
ered adjustable parameters in the analysis. Considering
the electroproduction process, summing the first orders in
perturbation theory we can write the expression for the
inclusive structure function,

F hard
2 (x,Q2) =

8
3

α2
s

π2

∑
f

e2
f Np

×
[

I (0)(Q2, µ2) +
3 αs

π
ln

x0

x
I (1)(Q2, µ2)

+
1
2

(
3 αs

π
ln

x0

x

)2

I (2)(Q2, µ2)

]
, (5)

where the functions I (n)(Q2, µ2) correspond to the n-rung
gluon ladder contribution. The quantity x0 gives the scale
normalizing the logarithms on energy for the LLA BFKL
approach, which is arbitrary and enters as an additional
parameter. The contributions are written explicitly as

I (0) =
1
2

ln2

(
Q2

µ2

)
+

7
6

ln
(

Q2

µ2

)
+

77
18

, (6)

I (1) =
1
6

ln3

(
Q2

µ2

)
+

7
12

ln2

(
Q2

µ2

)

+
77
18

ln
(

Q2

µ2

)
+

131
27

+ 2 ζ(3) , (7)

I (2) =
1
24

ln4

(
Q2

µ2

)
+

7
36

ln3

(
Q2

µ2

)

+
77
36

ln2

(
Q2

µ2

)
+

(
131
27

+ 4ζ(3)
)

ln
(

Q2

µ2

)

+
1396
81

− π4

15
+

14
3

ζ(3) , (8)

where ζ(3) ≈ 1.202. The clear behavior on x and virtuality
is worth mentioning. The main result in ref. [15] is in good
agreement, in terms of a χ2/dof test, for the inclusive
structure function in the range 0.045 ≤ Q2 ≤ 1500 GeV2,
once considered the restricted kinematical constraint x ≤
0.025. The non-perturbative contribution (from the soft
dynamics), initially considered as a background, was found
to be not negligible. In the next section, we perform a
global analysis, extending the range on x fitted by adding
the non-singlet contribution modeled through the usual
Regge parameterizations and analyzing also the multipole
models for the soft pomeron.

3 Fitting results and conclusions

In order to perform the fitting procedure, for the hard
piece one uses eq. (5) and for the soft piece we have se-
lected some typical models, as addressed below. First, one
takes into account the latest version [19] of the CKMT
model [20], having an economical number of parameters,

F soft
2 (x,Q2) = A

(
1
x

)∆(Q2)

×
(

Q2

Q2 + a

)∆(Q2)+1

(1 − x)ns(Q2)
, (9)

∆(Q2) = ∆0

(
1 +

Q2∆1

∆2 + Q2

)
,

ns(Q2) =
7
2

(
1 +

Q2

Q2 + b

)
, (10)

where ∆(Q2) is the pomeron intercept. The non-singlet
term takes the following form:

Fns(x,Q2) = AR x1−αR

(
Q2

Q2 + aR

)αR

(1−x)nns(Q2) , (11)

nns(Q2) =
3
2

(
1 +

Q2

Q2 + d

)
. (12)

The CKMT model was originally constructed to inter-
polate between the soft hadronic pomeron phenomenol-
ogy, where αpom�1.08, and the growth for the low-Q2 pro-
ton structure function in deep inelastic scattering, where
αpom � 1.2. This is obtained through absorbtive correc-
tions to the bare soft pomeron, leading to a Q2-dependent
intercept. Therefore, in phenomenological application
considering a two-pomeron approach, we should be careful
in verifying the soft pomeron intercept coming out.

Another possibility is to select a soft piece which corre-
sponds to the pomeron with intercept equal to unity and
has the form of non-perturbative truncated ln

(
Q2

x

)
series

(soft multipole pomeron) [3,4], given by

F soft
2 (x,Q2) = Q2

[
A ·

(
a

Q2 + a

)α

+B · ln
(

Q2

x

) (
a

Q2 + a

)β ]
(13)

for the dipole pomeron and

F soft
2 (x,Q2) = Q2

[
A ·

(
a

Q2 + a

)α

+B · ln2

(
Q2

x

)(
a

Q2 + a

)β ]
(14)

for the tripole pomeron.
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Table 1. Parameters of the fit. Procedure (I): hard + soft terms; procedure (II): similar to analysis (I), but restricting soft
pomeron intercept; procedure (III): only hard term and non-singlet contribution. Procedure (IV): hard + soft dipole pomeron
terms; procedure (V): hard + soft tripole pomeron terms.

(I) (II) (III) (IV) (V)

N 0.0237 0.0238 0.0195 0.0269 0.0195
Hard pomeron µ2 1.36 1.40 0.108 1.42 1.33

x0 0.798 · 10−2 1.01 · 10−2 0.398 · 10−2 0.833 · 10−2 0.808 · 10−2

αs 0.202 0.217 0.0804 0.204 0.215

A 0.327 0.366 – A 0.291 0.220
a 0.754 1.11 – a 2.39 1.19

Soft pomeron ∆0 0.638 · 10−2 0.07(fixed) – α 1.87 1.32
∆1 25.7 6.00 – B 0.712 · 10−2 0.437 · 10−3

∆2 6.31 0.02(fixed) – β 1.20 1.17
b 33.4 7.35 2.00 19.6 39.5

AR 5.94 6.73 10.3 6.31 5.88
Non-singlet aR 653 306 869 502 650

d 1.14 0.796 2.22 0.947 1.02

χ2/dof 1.10 1.23 1.39 1.09 1.03

The multipole means the soft pomeron is considered as
multiple poles instead of just a single pole. This approach
has been successful in hadron-hadron and lepton-hadron
(mostly vector meson photoproduction) scattering, where
the increase of the cross-section on energy can be produced
with a unit pomeron intercept. The multipole model has
shown to be quite stable in fitting simultaneously hadronic
and lepton-hadron data.

Concerning the hard piece, eq. (5), we selected the
overall normalization factor as a free parameter, defined as
N = 8

3
α2

s

π2

∑
e2
f Np, considering four active flavors. That

contribution was also supplemented by a factor (1 − x)ns

accounting for the large-x effects. The remaining param-
eters are the scales µ2 and x0 as well as the coupling con-
stant αs (considered at a fixed scale in the BFKL formal-
ism). As we will see in the following, its value presents
a small variation in the fitting, suggesting that it can be
considered fixed as αs = 0.2, which is typical in the HERA
kinematical region.

For the fitting procedure we consider the data set con-
taining all available HERA data for the proton structure
function F2 [21–30] updated with a new HERA experi-
ment [31] and adding only the latest (E665 and NMC)
data set of fixed-target experiments [32,33]. This choice
for the selection of data sets follows the procedures used
in ref. [3]. The whole data set contains a total number of
1059 experimental points, covering the complete available
x and virtualities 0.045 ≤ Q2 ≤ 30000 GeV2. It should
be stressed that the inclusion of the older fixed-target ex-
perimental data (SLAC [34] and BCDMS [35]) requires a
more sophisticated study for the background, for exam-
ple, following the ALLM parameterization or as in ref. [3].
However, for that purpose the number of free parameters
would be significantly larger.

Here, we have considered the following distinct fitting
procedures:

– (I) Overall fit considering the hard piece and the
CKMT soft pomeron plus reggeon piece, eqs. (9)
and (11).

– (II) Overall fit restricting the soft pomeron intercept,
modifying the expression for ∆(Q2), see eq. (10), in
the CKMT soft pomeron. It reads now as

∆(Q2) = ∆0

(
Q2

∆1 + Q2

)
+ ∆2 . (15)

– (III) The fit is performed considering only the hard
piece plus the non-singlet contribution.

– (IV) and (V) Overall fit using the hard pomeron piece
and the soft multipoles pomeron, eqs. (13) and (14).
The main feature is the soft pomeron having an inter-
cept equal to unity.

The best-fit parameters for these procedures are pre-
sented in table 1. The kinematical range covered is 0 ≤
x ≤ 1 and 0.045 ≤ Q2 ≤ 30000. In the following we dis-
cuss each procedure, pointing out the relative contribution
from the hard and soft pieces and its quality.

Let us start from procedure (I). The parameters for the
hard piece remain consistent with the previous analysis
in [15], i.e. αs ∼ 0.2, x0 � 10−2 and µ2 of order 1 GeV2.
Concerning the soft pomeron, the bare intercept ∆0 comes
out quite small in the whole range of Q2. This fact seems
to corroborate a soft pomeron having an intercept close
to unity in this two-pomeron analysis. The same happens
for procedure (II), with a modified form for the CKMT
intercept. For low Q2, the intercept comes out small, but
at higher virtualities reaches the upper limit ∆ = 0.08.
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Fig. 1. The inclusive structure function at small-Q2 virtualities. The procedures (I)-(V) produce nearly equivalent curves. The
SLAC [34] and BCDMS [35] data are not included into the fit. The virtualities are in units of GeV2.
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Fig. 2. The results for the inclusive structure function at medium- and high-Q2 virtualities (in units of GeV2).



A.I. Lengyel and M.V.T. Machado: On a two-pomeron description of the F2 structure function 585

                           

                           

                                       

                                       

                                       

                                                    

                                       

                                       

                                                    

                                                    

 

 H 1   ZEUS  NMC   BCDMS   S L A C  E665

1

1

110-310-4 10-1 10-1 10-110-210-2 10-2
10-310-410-3

0

0

0

2

1

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

0

1

2

 

 

H A R D

S O F T

P R O C ED U R E  V

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

S O F T

H A R D

 

 

P R O C ED U R E  II

Q2 = 1500 GeV2
                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

S O F T

H A R D

 

PR O CE DU R E I

Q2 = 150 GeV2

Q2 = 15 GeV/c2
                                       

                                       

                                       

                                       

                                       

                                                    

S O F T

H A R D

P R O C E D U R E  I

 

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

P R O C E D U R E  II

 

S O F T

H A R D

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

S O F T

H A R D

P R O C E D U R E  V

 

                                       

                                       

                                       

                                       

                                       

                                                    

S O F T

H A R D

P R O C E D U R E  V

 

 

                                       

                                       

                                       

                                       

                                                    

                                                    

S O F T

H A R D

P R O C E D U R E  II

 

 

                                       

                                       

                                       

                                       

                                       

                                                    

S O F T

H A R D

P R O C E D U R E I

 

 

x

10-5

F2

Fig. 3. The results for the inclusive structure function at Q2 = 15, 150 and 1500 GeV2 virtualities with the contribution of
soft and hard pieces for the different procedures.

Procedures (IV) and (V), considering the soft multi-
pole pomeron, provide the best quality of fit χ2/dof � 1.
The tripole pomeron is preferred as a soft background,
giving a slightly better result than the dipole pomeron.
Concerning the hard piece, the value for the fixed cou-
pling constant is quite stable, αs � 0.2, consistent with
the overall HERA value.

The situation differs only in procedure (III), where a
small value for αs is found, suggesting, in this case, that
the best choice would be αs = 0.119, which coincides with
αs(MZ). The high χ2/dof for this case is not quite size-
able, in view of the smaller number of parameters consid-
ered (8 against 13 from the remaining analysis).

In figs. 1 and 2, we present the fit result for the inclu-
sive structure function for small and large virtualities. The
plots for the different procedures lie on top of each other.
In fig. 3, we present the relative role of the distinct contri-

butions for the fit. The hard and soft pieces are presented
separately. We present them explicitly for the virtualities
15, 150 and 1500 GeV2, where the contributions from fit-
ting (I), (II) and (V) are shown. It is verified that the re-
gion where the hard pomeron starts to dominate depends
on the vituality. For instance, at Q2 = 15 GeV2 it stays on
x ∼ 10−3 for the different procedures, whereas it is shifted
to x ∼ 10−2 at Q2 = 1500 GeV2. A two-pomeron picture is
supported, comparable with those using the two-pomeron
analysis in refs. [3,5].

Additionally, we performed the fit restricting the do-
main of the Bjorken variable to x ≤ 0.07. This procedure
is similar to that considered in the analysis of ref. [3]. For
this purpose, we restricted the number of free parameters
(equal to 10) for the soft + hard pomeron model, as in the
Donnachie-Landshoff model reanalysis considered in [3].
To this aim, we fixed the constant αs = 0.2 as well as the
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Table 2. Parameters of the fit for restricted domain x ≤ 0.07. Procedure (A): hard + soft terms; procedure (B): hard + soft
dipole pomeron terms; procedure (C): hard + soft tripole pomeron terms.

(A) (B) (C)

N 0.0196 0.0280 0.0195
Hard pomeron µ2 1.38 1.42 0.143

x0 0.915 · 10−2 0.793 · 10−2 0.940 · 10−2

A 0.317 0.134 0.212
a 0.757 2.74 1.25

Soft pomeron ∆0 0.0515 α 2.18 1.39
∆1 3.38 B 0.469 · 10−2 0.513 · 10−3

∆2 9.27 β 1.20 1.19

AR 10.2 10.4 10.2
Non-singlet aR 698 112 543

χ2/dof 0.95 1.00 0.92

powers ns = 7 and nns = 3. The following procedures were
considered: (A) hard + soft terms; (B) hard + soft dipole
pomeron terms; (C) hard + soft tripole pomeron terms.
Results of the fit are presented in table 2. The quality of
our approach is similar to those found in ref. [3], at least
in this specific domain, x ≤ 0.07. The parameters for the
multipole pomeron seem stable in this kinematical region.
There is a change in case (A), where the bare pomeron in-
tercept is higher than in procedure (I) producing a usual
soft result ∆ � 0.08. The parameters for the hard piece
remain stable in all fitting procedures.

In conclusion, we verify that the fitting procedure
is equivalent to the model using the two-pomeron ap-
proach [3,5], with the advantage of the clear understand-
ing of the behaviors on x and Q2 of the corresponding
hard content. In particular, the behavior on Q2 of the
hard piece sheds light on further implementations of the
hard pomeron residue in the two-pomeron fitting. The fit-
ting procedure shows that the soft pomeron has an inter-
cept smaller than the usual αIP = 1.08, suggesting that
a suitable choice is the multipole pomeron having inter-
cept equal to unity. In particular, the tripole pomeron
presented the best-fit result in all kinematical ranges con-
sidered here, followed by the dipole one. The fitting using
only the hard piece and the non-singlet contributions is
not completely ruled out, producing a not so high χ2/dof
result.

M.V.T.M. thanks the support of the High Energy Physics
Phenomenology Group (GFPAE, IF-UFRGS) at Institute of
Physics, Porto Alegre.
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